Overview
Bake configuration controls model training behavior, including datasets, training parameters, model adapters, and integrations.Core Configuration
Datasets
List of targets to use as training dataEach dataset has:
target(string, required): Target nameweight(float): Sampling weight (higher = more frequently sampled)
Training Parameters
Number of training epochs
Micro batch size
Gradient accumulation steps for effective batch size
Total number of trajectories to use for training
Random seed for reproducibility
Model Configuration
Model and adapter configurationFields:
type: Model type (e.g.,"bake")parent_model_name: Parent model name (base model like"Qwen/Qwen3-32B"or baked model like"user/repo/bake_name/checkpoint"). Defaults to the repository’s base model if not specified.baked_adapter_config: LoRA configuration (see below)dtype: Data type for model weights (e.g.,"bf16","fp16","fp32")attn_implementation: Attention implementation (e.g.,"sdpa","flash_attention_2")disable_activation_checkpoint: Disable the use of activation checkpointing (default:false)peft_config: Configuration dictionary for Parameter Efficient Fine Tuning
LoRA Configuration
LoRA (Low-Rank Adaptation) configuration
Optimizer & Scheduler
Optimizer configuration
Learning rate scheduler
Advanced Configuration
DeepSpeed
DeepSpeed ZeRO configurationZeRO Stages:
- Stage 0: Disabled
- Stage 1: Optimizer state partitioning
- Stage 2: + Gradient partitioning
- Stage 3: + Parameter partitioning
Checkpoint Configuration
List of checkpoint engine configurationsFields:
type: Checkpoint engine type (e.g.,"huggingface")output_dir: Output directory for checkpointsenabled: Enable this checkpoint engine (default:True)auto_resume: Resume training from checkpoint if found (default:False)save_every_n_steps: Save checkpoint every N training stepssave_every_n_epochs: Save checkpoint every N epochssave_end_of_training: Save checkpoint at end of training (default:False)
Data Configuration
Data loading and processing configurationFields:
type: Data type (e.g.,"single_baker")sources: List of training data sourceseval_sources: List of evaluation data sourcesmax_length: Maximum sequence lengthtrain_eval_split: Train/eval split ratio[train, eval](must sum to 1.0)dl_num_workers: Number of dataloader workers per GPUnum_proc: Number of processes for data loadingseed: Seed for data loadingbeta: Beta parameter for trainingtemperature: Sampling temperature
Complete Example
Field Reference Table
| Field | Type | Required | Description |
|---|---|---|---|
datasets | Array | Yes | Training data sources |
epochs | Integer | No | Number of training epochs |
micro_batch_size | Integer | No | Batch size per device |
gradient_accumulation_steps | Integer | No | Gradient accumulation |
seed | Integer | No | Random seed |
model | Object | No | Model configuration |
data | Object | No | Data loading configuration |
optimizer | Object | No | Optimizer settings |
scheduler | Object | No | LR scheduler |
deepspeed | Object | No | DeepSpeed config |
checkpoint | Array | No | Checkpoint engine configuration |